Rapporter från Växjö universitet Matematik, naturvetenskap och teknik

Denna rapport tar en titt på phishing-problemet, något som många har råkat ut för med bland annat de falska Nordea eller eBay mejl som på senaste tiden har dykt upp i våra inkorgar, och ett eventuellt sätt att minska phishingens effekt. Fokus i rapporten ligger på klassificering av mejl och den huvu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Karlsson Nicklas 1984- , Växjö universitet, Matematiska och systemtekniska institutionen
Format: Web Resource
Sprache:swe
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Denna rapport tar en titt på phishing-problemet, något som många har råkat ut för med bland annat de falska Nordea eller eBay mejl som på senaste tiden har dykt upp i våra inkorgar, och ett eventuellt sätt att minska phishingens effekt. Fokus i rapporten ligger på klassificering av mejl och den huvudsakliga frågeställningen är: ”Är det, med hög träffsäkerhet, möjligt att med hjälp av ett klassificeringsverktyg sortera ut mejl som har med phishing att göra från övrig skräppost.” Det visade sig svårare än väntat att hitta phishing mejl att använda i klassificeringen. I de klassificeringar som genomfördes visade det sig att både metoden Naive Bayes och med Support Vector Machine kan hitta upp till 100 % av phishing mejlen. Rapporten pressenterar arbetsgången, teori om phishing och resultaten efter genomförda klassificeringstest. Självständigt arbete på grundnivå (kandidatexamen) 10 poäng / 15 hp This report takes a look at the phishing problem, something that many have come across with for example the fake Nordea or eBay e-mails that lately have shown up in our e-mail inboxes, and a possible way to reduce the effect of phishing. The focus in the report lies on classification of e-mails and the main question is: “Is it, with high accuracy, possible with a classification tool to sort phishing e-mails from other spam e-mails.” It was more difficult than expected to find phishing e-mails to use in the classification. The classifications that were made showed that it was possible to find up to 100 % of the phishing e-mails with both Naive Bayes and with Support Vector Machine. The report presents the work done, facts about phishing and the results of the classification tests made. Denna rapport tar en titt på phishing-problemet, något som många har råkat ut för med bland annat de falska Nordea eller eBay mejl som på senaste tiden har dykt upp i våra inkorgar, och ett eventuellt sätt att minska phishingens effekt. Fokus i rapporten ligger på klassificering av mejl och den huvudsakliga frågeställningen är: ”Är det, med hög träffsäkerhet, möjligt att med hjälp av ett klassificeringsverktyg sortera ut mejl som har med phishing att göra från övrig skräppost.” Det visade sig svårare än väntat att hitta phishing mejl att använda i klassificeringen. I de klassificeringar som genomfördes visade det sig att både metoden Naive Bayes och med Support Vector Machine kan hitta upp till 100 % av phishing mejlen. Rapporten pressenterar arbetsgången, teori om phishing och resultate