Renormalizing the kinetic energy operator in elementary quantum mechanics

In this paper, we consider solutions to the three-dimensional Schrodinger equation of the form [psi](r) = u(r)/r, where u(0) [is not equal to] 0. The expectation value of the kinetic energy operator for such wavefunctions diverges. We show that it is possible to introduce a potential energy with an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of physics 2009-09, Vol.30 (5), p.1015-1023
Hauptverfasser: Coutinho, F A B, Amaku, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we consider solutions to the three-dimensional Schrodinger equation of the form [psi](r) = u(r)/r, where u(0) [is not equal to] 0. The expectation value of the kinetic energy operator for such wavefunctions diverges. We show that it is possible to introduce a potential energy with an expectation value that also diverges, exactly cancelling the kinetic energy divergence. This renormalization procedure produces a self-adjoint Hamiltonian. We solve some problems with this new Hamiltonian to illustrate its usefulness.
ISSN:0143-0807
1361-6404
DOI:10.1088/0143-0807/30/5/010