VR in chemistry, a review of scientific research on advanced atomic/molecular visualization

Atomic/molecular visualization for human sight is usually generated by a software that reproduces a 3D reality on a 2D screen. Although Virtual Reality (VR) software was originally developed for the gaming industry, now it is used in academia for chemistry teaching. This work reviews the scientific...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry Education Research and Practice 2022-04, Vol.23 (2), p.3-312
Hauptverfasser: Fombona-Pascual, Alba, Fombona, Javier, Vázquez-Cano, Esteban
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Atomic/molecular visualization for human sight is usually generated by a software that reproduces a 3D reality on a 2D screen. Although Virtual Reality (VR) software was originally developed for the gaming industry, now it is used in academia for chemistry teaching. This work reviews the scientific literature on 3D visualization in stereoscopic vision, the VR. VR has the capability to simulate reality since we do not observe these real particles, but it reproduces their shapes and movements digitally. The aim of this study is to present the applications of this technology and to show the function of VR in the field of chemistry and the potential for implementation of VR in research and educational settings. The review is based on 219 articles and meeting papers, between 2018 and 2020, obtained from Web of Science (WoS). A series of registers from the WoS repository was analyzed and assigned to three groups, an analysis of 2D support software, analysis of research on Virtual Reality (VR), and research on Virtual Laboratories (VL). The research on advanced atomic/molecular simulation reveals discrepancies regarding the VR effectiveness of Chemistry teaching. Novel Virtual Reality Laboratory (VRL) methodologies are emerging that have a high impact on educational and research scenarios. VL and VRL entail several advantages and drawbacks, such as the implementation of new methodologies, the increase in the students' motivation, the growth of new spaces for collaborative online interaction, and the interaction with physical structure of any impossible, dangerous, or not feasible elements. Finally, the article compares the main features and the learning outcomes of the VRL and the traditional laboratory.
ISSN:1109-4028
1756-1108
1109-4028
1756-1108
DOI:10.1039/d1rp00317h