Summarizing Learning Materials Using Graph Based Multi-Document Summarization

The learners and teachers of the teaching-learning process highly depend on online learning systems such as E-learning, which contains huge volumes of electronic contents related to a course. The multi-document summarization (MDS) is useful for summarizing such electronic contents. This article appl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of web-based learning and teaching technologies 2021-09, Vol.16 (5), p.39-57
Hauptverfasser: Krishnaveni, P, Balasundaram, S. R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The learners and teachers of the teaching-learning process highly depend on online learning systems such as E-learning, which contains huge volumes of electronic contents related to a course. The multi-document summarization (MDS) is useful for summarizing such electronic contents. This article applies the task of MDS in an E-learning context. The objective of this article is threefold: 1) design a generic graph based multi-document summarizer DSGA (Dynamic Summary Generation Algorithm) to produce a variable length (dynamic) summary of academic text based learning materials based on a learner's request; 2) analyze the summary generation process; 3) perform content-based and task-based evaluations on the generated summary. The experimental results show that the DSGA summarizer performs better than the graph-based summarizers LexRank (LR) and Aggregate Similarity (AS). From the task-based evaluation, it is observed that the generated summary helps the learners to understand and comprehend the materials easily.
ISSN:1548-1093
1548-1107
DOI:10.4018/IJWLTT.20210901.oa3