Count Data Regression Analysis: Concepts, Overdispersion Detection, Zero-Inflation Identification, and Applications with R
In this paper is proposed a straightforward model selection approach that indicates the most suitable count regression model based on relevant data characteristics. The proposed selection approach includes four of the most popular count regression models (i.e. Poisson, negative binomial, and respect...
Gespeichert in:
Veröffentlicht in: | Practical assessment, research & evaluation research & evaluation, 2021-06, Vol.26 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper is proposed a straightforward model selection approach that indicates the most suitable count regression model based on relevant data characteristics. The proposed selection approach includes four of the most popular count regression models (i.e. Poisson, negative binomial, and respective zero-inflated frameworks). Moreover, it addresses two of the most relevant problems commonly found in real-world count datasets, namely overdispersion and zero-inflation. The entire selection approach may be performed using the programming language R, being all commands used throughout the paper available for practical purposes. It is worth mentioning that counting regression models are still not widespread within the social sciences. |
---|---|
ISSN: | 1531-7714 1531-7714 |
DOI: | 10.7275/44nn-cj68 |