Improved Margin Of Error Estimates For Proportions In Business: An Educational Example

This paper presents the Agresti & Coull "Adjusted Wald" method for computing confidence intervals and margins of error for common proportion estimates. The presented method is easily implementable by business students and practitioners and provides more accurate estimates of proportion...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of business education 2015-06, Vol.8 (3), p.185-192
Hauptverfasser: Arzumanyan, George, Halcoussis, Dennis, Phillips, G. Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents the Agresti & Coull "Adjusted Wald" method for computing confidence intervals and margins of error for common proportion estimates. The presented method is easily implementable by business students and practitioners and provides more accurate estimates of proportions particularly in extreme samples and small sample situations. The proposed method may have particular applications to focus group analysis, industry benchmarking, and destructive testing sampling. The paper discusses a computational strategy and several comparison examples.
ISSN:1942-2504
1942-2512
DOI:10.19030/ajbe.v8i3.9280