Data-Mining Textual Responses to Uncover Misconception Patterns
An important, yet largely unstudied problem in student data analysis is to detect "misconceptions" from students' responses to "open-response" questions. Misconception detection enables instructors to deliver more targeted feedback on the misconceptions exhibited by many stu...
Gespeichert in:
Veröffentlicht in: | International Educational Data Mining Society 2017 |
---|---|
Hauptverfasser: | , , , , |
Format: | Report |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An important, yet largely unstudied problem in student data analysis is to detect "misconceptions" from students' responses to "open-response" questions. Misconception detection enables instructors to deliver more targeted feedback on the misconceptions exhibited by many students in their class, thus improving the quality of instruction. In this paper, we propose a new natural language processing-based framework to detect the common misconceptions among students' textual responses to short-answer questions. We propose a probabilistic model for students' textual responses involving misconceptions and experimentally validate it on a real-world student-response dataset. Experimental results show that our proposed framework excels at classifying whether a response exhibits one or more misconceptions. More importantly, it can also automatically detect the common misconceptions exhibited across responses from multiple students to multiple questions; this property is especially important at large scale, since instructors will no longer need to manually specify all possible misconceptions that students might exhibit. [For the full proceedings, see ED596512.] |
---|