COMPUTER-IMPLEMENTED METHOD FOR GENERATING A COMBINED MACHINE LEARNING MODEL

The invention is directed to a Computer-implemented method for generating a combined machine learning model, comprising the steps: a. Providing a trained unsupervised machine learning model for anomaly detection; wherein the unsupervised machine learning model is trained on the basis of unlabeled tr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: BRUHN, Cecilia Margareta, LEBACHER, Michael, HANGAUER, Andreas
Format: Patent
Sprache:eng ; fre
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The invention is directed to a Computer-implemented method for generating a combined machine learning model, comprising the steps: a. Providing a trained unsupervised machine learning model for anomaly detection; wherein the unsupervised machine learning model is trained on the basis of unlabeled training data (S1); b. Determining at least one output label for each data item of a plurality of data items of unlabeled application data by applying the trained unsupervised machine learning model on the unlabeled application data with the plurality of data items; wherein the at least one determined output label is an anomaly or a normal state (S2); c. Transmitting the at least one determined output label to a user for verifying the at least one determined output label via a user interface (S3); d. Receiving at least one processed output label, at least one additional data item or at least one additional output label from the user via the user interface or maintaining the at least one determined output label unprocessed depending on the verification by the user (S4); e. Training at least one additional machine learning model for anomaly detection in accordance with the at least one processed output label, the at least one additional data item or the at least one additional output label (S5); f. Generating the combined machine learning model for anomaly detection using a connection function based on the trained unsupervised machine learning model and the at least one trained additional machine learning model (S6); and g. Providing the combined machine learning model as output (S7). Further, the invention relates to a computer program product and technical system. L'invention concerne un procédé mis en oeuvre Par ordinateur pour générer un modèle d'apprentissage machine combiné, comprenant les étapes consistant à : a. fournir un modèle d'apprentissage machine non supervisé entraîné pour une détection d'anomalie ; le modèle d'apprentissage machine non supervisé étant entraîné sur la base de données d'apprentissage non étiquetées (S1) ; b. déterminer au moins une étiquette de sortie pour chaque élément de données d'une pluralité d'éléments de données de données d'application non étiquetées par application du modèle d'apprentissage machine non supervisé entraîné sur les données d'application non étiquetées avec la pluralité d'éléments de données ; ladite au moins une étiquette de sortie déterminée étant une anomalie ou un état normal (S2) ; c. transmettre la ou les é