TARGET LOCALIZATION AND SIZE ESTIMATION VIA MULTIPLE MODEL LEARNING IN VISUAL TRACKING

Visual target tracking has many challenges such as robustness to occlusion, noise, drifts, stabilization etc. Although various algorithms are proposed as a remedy for these problems, the solutions should be narrowed to algorithms with low computational cost when real time systems are in consideratio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: TANISIK, GÖKHAN, OZ, SINAN, TUNALI, EMRE, GUNDOGDU, ERHAN
Format: Patent
Sprache:eng ; fre
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Visual target tracking has many challenges such as robustness to occlusion, noise, drifts, stabilization etc. Although various algorithms are proposed as a remedy for these problems, the solutions should be narrowed to algorithms with low computational cost when real time systems are in consideration. In this manner, the family of tracking methods based on correlation filters is a prominent option since many of the algorithms in this family are efficient and simple to implement. In order to achieve efficient and robust tracking system, the present invention relates a correlation based tracker with a target localization and size estimation method with a feedback mechanism. In this sense, target model is dynamically learnt and extracted in the tracker window encapsulating the actual target and this model is used both for target localization and size estimation in addition to track window correction which introduces robustness to improper initializations. Moreover, a multiple model visual tracking methodology is also presented in order to adapt to changes in target model with different rates that are either caused by changes in the target or its surroundings. The overall system can be used as a real-time visual tracking system with adaptive learning mechanism and provides minimum sized target bounding box as output. Furthermore, the method presented in this invention is capable of target model extraction which can be considered as a preprocessing step of a shape based object classification algorithm. La poursuite visuelle d'une cible pose de nombreux défis tels que la robustesse au masquage, au bruit, aux dérives, la stabilisation, etc. Bien que divers algorithmes aient été proposés pour remédier à ces problèmes, les solutions doivent être limitées à des algorithmes à faible coût de calcul quand on considère des systèmes en temps réel. De ce fait, la famille des procédés de poursuite faisant appel à des filtres de corrélation est une option évidente étant donné qu'un grand nombre d'algorithmes de cette famille sont efficaces et simples à mettre en œuvre. Dans le but de réaliser un système de poursuite efficace et robuste, la présente invention concerne un dispositif de poursuite faisant appel à la corrélation doté d'un procédé de localisation et d'estimation de taille de cible à mécanisme de rétroaction. Dans ce sens, un modèle de cible est appris de façon dynamique et extrait dans la fenêtre du dispositif de poursuite englobant la cible réelle, et ce modèle