Patterned magnetic recording media with discrete magnetic regions separated by regions of antiferromagnetically coupled films
A magnetic recording disk is patterned into discrete magnetic and nonmagnetic regions with the magnetic regions serving as the magnetic recording data bits. The magnetic recording layer comprises two ferromagnetic films separated by a nonferromagnetic spacer film. The spacer film material compositio...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A magnetic recording disk is patterned into discrete magnetic and nonmagnetic regions with the magnetic regions serving as the magnetic recording data bits. The magnetic recording layer comprises two ferromagnetic films separated by a nonferromagnetic spacer film. The spacer film material composition and thickness is selected such that the first and second ferromagnetic films are antiferromagnetically coupled across the spacer film. After this magnetic recording layer has been formed on the disk substrate, ions are irradiated onto it through a patterned mask. The ions disrupt the spacer film and thereby destroy the antiferromagnetic coupling between the two ferromagnetic films. As a result, in the regions of the magnetic recording layer that are ion-irradiated the first and second ferromagnetic films are essentially ferromagnetically coupled so that the magnetic moments from the ferromagnetic films are parallel and produce a magnetic moment that is essentially the sum of the moments from the two films. In the non-irradiated regions of the magnetic recording layer, the first and second ferromagnetic films remain antiferromagnetically coupled so that their magnetic moments are oriented antiparallel. The composition and thicknesses of the first and second ferromagnetic films are selected such that essentially no magnetic field is detectable at a predetermined distance above the magnetic recording layer corresponding to the height that the magnetic recording head would be located. |
---|