Systems and methods for constructed response scoring using metaphor detection
Systems and methods described herein utilize supervised machine learning to generate a figure-of-speech prediction model for classify content words in a running text as either being figurative (e.g., as a metaphor, simile, etc.) or non-figurative (i.e., literal). The prediction model may extract and...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Systems and methods described herein utilize supervised machine learning to generate a figure-of-speech prediction model for classify content words in a running text as either being figurative (e.g., as a metaphor, simile, etc.) or non-figurative (i.e., literal). The prediction model may extract and analyze any number of features in making its prediction, including a topic model feature, unigram feature, part-of-speech feature, concreteness feature, concreteness difference feature, literal context feature, non-literal context feature, and off-topic feature, each of which are described in detail herein. Since uses of figure of speech in writings may signal content sophistication, the figure-of-speech prediction model allows scoring engines to further take into consideration a text's use of figure of speech when generating a score. |
---|