Processing quantum information
A quantum information processor can include a control system and a system of processor nodes. Each of the processor nodes can include multiple qubits and an actuator. The control system can manipulate the qubits of multiple processor nodes based on cross-node quantum interactions between the qubits....
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A quantum information processor can include a control system and a system of processor nodes. Each of the processor nodes can include multiple qubits and an actuator. The control system can manipulate the qubits of multiple processor nodes based on cross-node quantum interactions between the qubits. In some instances, the control system may perform multi-qubit quantum gates on qubits of different processor nodes based on the cross-node quantum interactions. Within each processor node, the qubits interact with the actuator by an intra-node quantum coupling. Between processor nodes, the actuators interact with each other by an inter-node quantum coupling. The cross-node quantum interaction can be produced by non-commutivity of the intra-node quantum couplings and the inter-node quantum couplings. In some instances, the qubits can be manipulated by applying a control sequence that produces an interaction frame where the cross-node quantum interaction dominates the time evolution of the system. |
---|