Polyester film, method for producing the same, back sheet for solar cell, and solar cell module
A polyester film has excellent resistance to hydrolysis, excellent heat resistance in high temperatures and low humidity, and mechanical strength. The polyester film satisfies a stress heat resistant coefficient f(125)≧3 and a wet thermo retention (=100×S(120)/S(0)) of 30% or more. f(125) is a value...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A polyester film has excellent resistance to hydrolysis, excellent heat resistance in high temperatures and low humidity, and mechanical strength. The polyester film satisfies a stress heat resistant coefficient f(125)≧3 and a wet thermo retention (=100×S(120)/S(0)) of 30% or more. f(125) is a value obtained by substituting t=125° C. in an approximation represented by f(t); t represents a temperature (° C.) at thermo processing; f(t) represents a stress heat resistant coefficient f at the thermo temperature t and represents an approximation to a straight line obtained by linear approximation by a least squares method of values plotted from a relationship between the thermo temperature t and a logarithm (log T(t)) of time T at which a rupture stress is 50% when t is 150° C., 160° C., 170° C., or 180° C.; T(t) is a time (hr) at which the maximum stress in a tensile test after thermo processing at t° C. and 0% RH is 50% of the maximum stress in a tensile test before thermo processing; S(120) is breaking elongation (%) after aging for 100 hours at 120° C. and 100% RH, and S(0) represents a breaking elongation (%) before aging. |
---|