Normalizing electronic communications using a vector having a repeating substring as input for a neural network
Electronic communications can be normalized using a neural network. For example, a noncanonical communication that includes multiple terms can be received. The noncanonical communication can be preprocessed by (I) generating a vector including multiple characters from a term of the multiple terms; a...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Electronic communications can be normalized using a neural network. For example, a noncanonical communication that includes multiple terms can be received. The noncanonical communication can be preprocessed by (I) generating a vector including multiple characters from a term of the multiple terms; and (II) repeating a substring of the term in the vector such that a last character of the substring is positioned in a last position in the vector. The vector can be transmitted to a neural network configured to receive the vector and generate multiple probabilities based on the vector. A normalized version of the noncanonical communication can be determined using one or more of the multiple probabilities generated by the neural network. Whether the normalized version of the noncanonical communication should be outputted can also be determined using at least one of the multiple probabilities generated by the neural network. |
---|