Determining the form of RF pulses for selective excitation in magnetic resonance imaging
The invention relates to a magnetic resonance method involving the generation of high-frequency pulses and magnetic gradients (gx, gy, gz) for the selective excitation of an object to be examined. According to the invention, the magnetic resonance method is characterized in that a magnetic resonance...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The invention relates to a magnetic resonance method involving the generation of high-frequency pulses and magnetic gradients (gx, gy, gz) for the selective excitation of an object to be examined. According to the invention, the magnetic resonance method is characterized in that a magnetic resonance signal s(t) according to the following signal equation is generated: s ( t ) = ∫ V m ( r r , T ) exp [ t / T 2 ] exp [ t ω s ] exp [ - k r ( T - t ) · r r ] 3 r wherein m(lr,t) stands for a desired transversal magnetization after the selective excitation, t stands for a time, {right arrow over (r)} stands for a position vector and T stands for a duration of a pulse, and whereby s(t) stands for a magnetic resonance signal, V stands for a volume that is to be examined, T2 stands for a transversal relaxation time, and ωs stands for a shift of the resonance frequency. The invention also relates to a nuclear spin tomograph for carrying out the magnetic resonance method. |
---|