Adaptive variable selection for data clustering
One or more processors generate subsets of cluster feature (CF)-trees, which represent respective sets of local data as leaf entries. One or more processors collect variables that were used to generate the CF-trees included in the subsets. One or more processors generate respective approximate clust...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Xu Jing Spisic Damir Shyr Jing-Yun |
description | One or more processors generate subsets of cluster feature (CF)-trees, which represent respective sets of local data as leaf entries. One or more processors collect variables that were used to generate the CF-trees included in the subsets. One or more processors generate respective approximate clustering solutions for the subsets by applying hierarchical agglomerative clustering to the collected variables and leaf entries of the plurality of CF-trees. One or more processors select candidate sets of variables with maximal goodness that are locally optimal for respective subsets based on the approximate clustering solutions. One or more processors select a set of variables, which produce an overall clustering solution, from the candidate sets of variables. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US9477781B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US9477781B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US9477781B23</originalsourceid><addsrcrecordid>eNrjZNB3TEksKMksS1UoSyzKTEzKSVUoTs1JTS7JzM9TSMsvUkhJLElUSM4pLS5JLcrMS-dhYE1LzClO5YXS3AwKbq4hzh66qQX58anFBYnJqXmpJfGhwZYm5ubmFoZORsZEKAEA8Xkq-Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Adaptive variable selection for data clustering</title><source>esp@cenet</source><creator>Xu Jing ; Spisic Damir ; Shyr Jing-Yun</creator><creatorcontrib>Xu Jing ; Spisic Damir ; Shyr Jing-Yun</creatorcontrib><description>One or more processors generate subsets of cluster feature (CF)-trees, which represent respective sets of local data as leaf entries. One or more processors collect variables that were used to generate the CF-trees included in the subsets. One or more processors generate respective approximate clustering solutions for the subsets by applying hierarchical agglomerative clustering to the collected variables and leaf entries of the plurality of CF-trees. One or more processors select candidate sets of variables with maximal goodness that are locally optimal for respective subsets based on the approximate clustering solutions. One or more processors select a set of variables, which produce an overall clustering solution, from the candidate sets of variables.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2016</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20161025&DB=EPODOC&CC=US&NR=9477781B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20161025&DB=EPODOC&CC=US&NR=9477781B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Xu Jing</creatorcontrib><creatorcontrib>Spisic Damir</creatorcontrib><creatorcontrib>Shyr Jing-Yun</creatorcontrib><title>Adaptive variable selection for data clustering</title><description>One or more processors generate subsets of cluster feature (CF)-trees, which represent respective sets of local data as leaf entries. One or more processors collect variables that were used to generate the CF-trees included in the subsets. One or more processors generate respective approximate clustering solutions for the subsets by applying hierarchical agglomerative clustering to the collected variables and leaf entries of the plurality of CF-trees. One or more processors select candidate sets of variables with maximal goodness that are locally optimal for respective subsets based on the approximate clustering solutions. One or more processors select a set of variables, which produce an overall clustering solution, from the candidate sets of variables.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2016</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZNB3TEksKMksS1UoSyzKTEzKSVUoTs1JTS7JzM9TSMsvUkhJLElUSM4pLS5JLcrMS-dhYE1LzClO5YXS3AwKbq4hzh66qQX58anFBYnJqXmpJfGhwZYm5ubmFoZORsZEKAEA8Xkq-Q</recordid><startdate>20161025</startdate><enddate>20161025</enddate><creator>Xu Jing</creator><creator>Spisic Damir</creator><creator>Shyr Jing-Yun</creator><scope>EVB</scope></search><sort><creationdate>20161025</creationdate><title>Adaptive variable selection for data clustering</title><author>Xu Jing ; Spisic Damir ; Shyr Jing-Yun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US9477781B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2016</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Xu Jing</creatorcontrib><creatorcontrib>Spisic Damir</creatorcontrib><creatorcontrib>Shyr Jing-Yun</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xu Jing</au><au>Spisic Damir</au><au>Shyr Jing-Yun</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Adaptive variable selection for data clustering</title><date>2016-10-25</date><risdate>2016</risdate><abstract>One or more processors generate subsets of cluster feature (CF)-trees, which represent respective sets of local data as leaf entries. One or more processors collect variables that were used to generate the CF-trees included in the subsets. One or more processors generate respective approximate clustering solutions for the subsets by applying hierarchical agglomerative clustering to the collected variables and leaf entries of the plurality of CF-trees. One or more processors select candidate sets of variables with maximal goodness that are locally optimal for respective subsets based on the approximate clustering solutions. One or more processors select a set of variables, which produce an overall clustering solution, from the candidate sets of variables.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US9477781B2 |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | Adaptive variable selection for data clustering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T02%3A08%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Xu%20Jing&rft.date=2016-10-25&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS9477781B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |