Adaptive variable selection for data clustering

One or more processors generate subsets of cluster feature (CF)-trees, which represent respective sets of local data as leaf entries. One or more processors collect variables that were used to generate the CF-trees included in the subsets. One or more processors generate respective approximate clust...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Xu Jing, Spisic Damir, Shyr Jing-Yun
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Xu Jing
Spisic Damir
Shyr Jing-Yun
description One or more processors generate subsets of cluster feature (CF)-trees, which represent respective sets of local data as leaf entries. One or more processors collect variables that were used to generate the CF-trees included in the subsets. One or more processors generate respective approximate clustering solutions for the subsets by applying hierarchical agglomerative clustering to the collected variables and leaf entries of the plurality of CF-trees. One or more processors select candidate sets of variables with maximal goodness that are locally optimal for respective subsets based on the approximate clustering solutions. One or more processors select a set of variables, which produce an overall clustering solution, from the candidate sets of variables.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US9477781B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US9477781B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US9477781B23</originalsourceid><addsrcrecordid>eNrjZNB3TEksKMksS1UoSyzKTEzKSVUoTs1JTS7JzM9TSMsvUkhJLElUSM4pLS5JLcrMS-dhYE1LzClO5YXS3AwKbq4hzh66qQX58anFBYnJqXmpJfGhwZYm5ubmFoZORsZEKAEA8Xkq-Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Adaptive variable selection for data clustering</title><source>esp@cenet</source><creator>Xu Jing ; Spisic Damir ; Shyr Jing-Yun</creator><creatorcontrib>Xu Jing ; Spisic Damir ; Shyr Jing-Yun</creatorcontrib><description>One or more processors generate subsets of cluster feature (CF)-trees, which represent respective sets of local data as leaf entries. One or more processors collect variables that were used to generate the CF-trees included in the subsets. One or more processors generate respective approximate clustering solutions for the subsets by applying hierarchical agglomerative clustering to the collected variables and leaf entries of the plurality of CF-trees. One or more processors select candidate sets of variables with maximal goodness that are locally optimal for respective subsets based on the approximate clustering solutions. One or more processors select a set of variables, which produce an overall clustering solution, from the candidate sets of variables.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2016</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20161025&amp;DB=EPODOC&amp;CC=US&amp;NR=9477781B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20161025&amp;DB=EPODOC&amp;CC=US&amp;NR=9477781B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Xu Jing</creatorcontrib><creatorcontrib>Spisic Damir</creatorcontrib><creatorcontrib>Shyr Jing-Yun</creatorcontrib><title>Adaptive variable selection for data clustering</title><description>One or more processors generate subsets of cluster feature (CF)-trees, which represent respective sets of local data as leaf entries. One or more processors collect variables that were used to generate the CF-trees included in the subsets. One or more processors generate respective approximate clustering solutions for the subsets by applying hierarchical agglomerative clustering to the collected variables and leaf entries of the plurality of CF-trees. One or more processors select candidate sets of variables with maximal goodness that are locally optimal for respective subsets based on the approximate clustering solutions. One or more processors select a set of variables, which produce an overall clustering solution, from the candidate sets of variables.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2016</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZNB3TEksKMksS1UoSyzKTEzKSVUoTs1JTS7JzM9TSMsvUkhJLElUSM4pLS5JLcrMS-dhYE1LzClO5YXS3AwKbq4hzh66qQX58anFBYnJqXmpJfGhwZYm5ubmFoZORsZEKAEA8Xkq-Q</recordid><startdate>20161025</startdate><enddate>20161025</enddate><creator>Xu Jing</creator><creator>Spisic Damir</creator><creator>Shyr Jing-Yun</creator><scope>EVB</scope></search><sort><creationdate>20161025</creationdate><title>Adaptive variable selection for data clustering</title><author>Xu Jing ; Spisic Damir ; Shyr Jing-Yun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US9477781B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2016</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Xu Jing</creatorcontrib><creatorcontrib>Spisic Damir</creatorcontrib><creatorcontrib>Shyr Jing-Yun</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xu Jing</au><au>Spisic Damir</au><au>Shyr Jing-Yun</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Adaptive variable selection for data clustering</title><date>2016-10-25</date><risdate>2016</risdate><abstract>One or more processors generate subsets of cluster feature (CF)-trees, which represent respective sets of local data as leaf entries. One or more processors collect variables that were used to generate the CF-trees included in the subsets. One or more processors generate respective approximate clustering solutions for the subsets by applying hierarchical agglomerative clustering to the collected variables and leaf entries of the plurality of CF-trees. One or more processors select candidate sets of variables with maximal goodness that are locally optimal for respective subsets based on the approximate clustering solutions. One or more processors select a set of variables, which produce an overall clustering solution, from the candidate sets of variables.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US9477781B2
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Adaptive variable selection for data clustering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T02%3A08%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Xu%20Jing&rft.date=2016-10-25&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS9477781B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true