Adaptive variable selection for data clustering

One or more processors generate subsets of cluster feature (CF)-trees, which represent respective sets of local data as leaf entries. One or more processors collect variables that were used to generate the CF-trees included in the subsets. One or more processors generate respective approximate clust...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Xu Jing, Spisic Damir, Shyr Jing-Yun
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:One or more processors generate subsets of cluster feature (CF)-trees, which represent respective sets of local data as leaf entries. One or more processors collect variables that were used to generate the CF-trees included in the subsets. One or more processors generate respective approximate clustering solutions for the subsets by applying hierarchical agglomerative clustering to the collected variables and leaf entries of the plurality of CF-trees. One or more processors select candidate sets of variables with maximal goodness that are locally optimal for respective subsets based on the approximate clustering solutions. One or more processors select a set of variables, which produce an overall clustering solution, from the candidate sets of variables.