Interaction detection for generalized linear models for a purchase decision
Provided are techniques for interaction detection for generalized linear models. Basic statistics are calculated for a pair of categorical predictor variables and a target variable from a dataset during a single pass over the dataset. It is determined whether there is a significant interaction effec...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Provided are techniques for interaction detection for generalized linear models. Basic statistics are calculated for a pair of categorical predictor variables and a target variable from a dataset during a single pass over the dataset. It is determined whether there is a significant interaction effect for the pair of categorical predictor variables on the target variable by: calculating a log-likelihood value for a full generalized linear model without estimating model parameters; calculating the model parameters for a reduced generalized linear model with a recursive marginal mean accumulation technique using the basic statistics; calculating a log-likelihood value for the reduced generalized linear model; calculating a likelihood ratio test statistic using the log-likelihood value for the full generalized linear model and the log-likelihood value for the reduced generalized linear model; calculating a p-value of the likelihood ratio test statistic; and comparing the p-value to a significance level. |
---|