Image cropping using supervised learning
Software for supervised learning extracts a set of pixel-level features from each source image in collection of source images. Each of the source images is associated with a thumbnail created by an editor. The software also generates a collection of unique bounding boxes for each source image. And t...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Software for supervised learning extracts a set of pixel-level features from each source image in collection of source images. Each of the source images is associated with a thumbnail created by an editor. The software also generates a collection of unique bounding boxes for each source image. And the software calculates a set of region-level features for each bounding box. Each region-level feature results from the aggregation of pixel values for one of the pixel-level features. The software learns a regression model, using the calculated region-level features and the thumbnail associated with the source image. Then the software chooses a thumbnail from a collection of unique bounding boxes in a new image, based on application of the regression model. The software uses a thumbnail received from an editor instead of the chosen thumbnail, if the chosen thumbnail is of insufficient quality as measured against a scoring threshold. |
---|