Microactuator using bubble growth and destruction
Disclosed is a microactuator using growth and destruction of bubbles including a first chamber provided with a heating plate installed at an exterior of a bottom surface of the first chamber to generate heat, and filled with a first liquid working fluid such that bubbles are caused, by heat, to grow...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Disclosed is a microactuator using growth and destruction of bubbles including a first chamber provided with a heating plate installed at an exterior of a bottom surface of the first chamber to generate heat, and filled with a first liquid working fluid such that bubbles are caused, by heat, to grow at an interface of a cavity on an inner surface of the first chamber to be heated, a second chamber provided with a heating plate installed at an exterior of a bottom surface of the second chamber to generate heat, and filled with a second liquid working fluid such that bubbles are caused, by heat, to grow at an interface of a cavity on an inner surface of the second chamber to be heated, a connection path to connect the first chamber and the second chamber to each other, the connection path being provided therein with a moving member adapted to isolate the first and second chambers from each other and to move when internal pressure changes according to growth and destruction of the bubbles, a first subline to connect the connection path to the second chamber such that the first working fluid moves the moving member to one side and is guided to the second chamber according to increase in the internal pressure by growth of the bubbles in the first chamber, a second subline to connect the connection path to the first chamber such that the second working fluid moves the moving member to the other side and is guided to the first chamber according to increase in internal pressure by growth of the bubbles in the second chamber, and a plurality of cooling means installed on the first subline and the second subline to destroy bubbles produced in the first and second chambers. |
---|