Efficient and compact visible microchip laser source with periodically poled nonlinear materials

A compact, optically-pumped solid-state microchip laser device uses efficient nonlinear intracavity frequency conversion for obtaining low-cost green and blue laser sources. The laser includes a solid-state gain medium, such as Nd:YVO4, and a nonlinear crystal. The nonlinear crystal is formed of per...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: SHCHEGROV ANDREI V, KHAYDAROV DZHAKHANGIR, ESSAIAN STEPAN
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A compact, optically-pumped solid-state microchip laser device uses efficient nonlinear intracavity frequency conversion for obtaining low-cost green and blue laser sources. The laser includes a solid-state gain medium, such as Nd:YVO4, and a nonlinear crystal. The nonlinear crystal is formed of periodically poled lithium niobate or periodically poled lithium tantalate, and the crystal is either MgO-doped, ZnO-doped, or stoichiometric to ensure high reliability. The nonlinear crystal provides efficient frequency doubling to translate energy from an infrared pump laser beam into the visible wavelength range. The laser device is assembled in a package having an output aperture for the output beam and being integrated with an optical bench accommodating a laser assembly. The package encloses and provides heat sinking for the semiconductor diode pump laser, the microchip laser cavity assembly, the optical bench platform, and electrical leads.