Micro-electromechanical pressure sensor having reduced thermally-induced stress
Thermally-induced stress on a silicon micro-electromechanical pressure transducer (MEMS sensor) is reduced by attaching the MEMS sensor to a plastic filled with low CTE fillers that lowers the plastic's coefficient of thermal expansion (CTE) to be closer to that of silicon. The MEMS sensor is a...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Thermally-induced stress on a silicon micro-electromechanical pressure transducer (MEMS sensor) is reduced by attaching the MEMS sensor to a plastic filled with low CTE fillers that lowers the plastic's coefficient of thermal expansion (CTE) to be closer to that of silicon. The MEMS sensor is attached to the housing using an epoxy adhesive/silica filler mixture, which when cured has a CTE between about ten PPM/° C. and about thirty PPM/° C. in order to match the housing CTE. The adhesive also has a glass transition temperature (Tg) above the operating temperature range. This design provides good sealing of the sensor and stable sensor outputs. |
---|