Identification of co-regulation patterns by unsupervised cluster analysis of gene expression data
A method is provided for unsupervised clustering of gene expression data to identify co-regulation patterns. A clustering algorithm randomly divides the data into k different subsets and measures the similarity between pairs of datapoints within the subsets, assigning a score to the pairs based on s...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A method is provided for unsupervised clustering of gene expression data to identify co-regulation patterns. A clustering algorithm randomly divides the data into k different subsets and measures the similarity between pairs of datapoints within the subsets, assigning a score to the pairs based on similarity, with the greatest similarity giving the highest correlation score. A distribution of the scores is plotted for each k. The highest value of k that has a distribution that remains concentrated near the highest correlation score corresponds to the number of co-regulation patterns. |
---|