Discriminative syntactic word order model for machine translation

A discriminatively trained word order model is used to identify a most likely word order from a set of word orders for target words translated from a source sentence. For each set of word orders, the discriminatively trained word order model uses features based on information in a source dependency...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: TOUTANOVA KRISTINA NIKOLOVA, CHANG PIUAN
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A discriminatively trained word order model is used to identify a most likely word order from a set of word orders for target words translated from a source sentence. For each set of word orders, the discriminatively trained word order model uses features based on information in a source dependency tree and a target dependency tree and features based on the order of words in the word order. The discriminatively trained statistical model is trained by determining a translation metric for each of a set of N-best word orders for a set of target words. Each of the N-best word orders are projective with respect to a target dependency tree and the N-best word orders are selected using a combination of an n-gram language model and a local tree order model.