Comparator circuit having latching behavior and digital output sensors therefrom

A digital output sensor (110) includes a sensing structure (105) including at least one sensing element. The sensing structure (105) outputs a differential sensing signal (106, 107). An integrated circuit (100) includes a substrate (101) including signal conditioning circuitry for conditioning the s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: KILIAN WAYNE
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator KILIAN WAYNE
description A digital output sensor (110) includes a sensing structure (105) including at least one sensing element. The sensing structure (105) outputs a differential sensing signal (106, 107). An integrated circuit (100) includes a substrate (101) including signal conditioning circuitry for conditioning the sensing signal (106, 107). The signal conditioning circuitry includes a differential amplifier (115) coupled to receive the sensing signal and provide first and second differential outputs (116, 117), and a comparator (120) having input transistors (Q27, Q28) coupled to receive outputs from the differential amplifier. The comparator (120) also includes first and second current-mirror loads (Q19/Q21 and Q22/Q20) coupled to the input transistors (Q27, Q28) in a cross coupled configuration to provide hysteresis, wherein the first and second current-mirror loads provide differential drive currents (121,122). An output driver (125) is coupled to receive the differential drive currents (121, 122). An output stage (130) includes at least one output transistor which is coupled to the output driver for providing a digital output for the sensor. A voltage regulator (140) is coupled to receive a supply voltage (VS) and output at least one regulated supply voltage (VREG), wherein the regulated supply voltage is coupled to the sensing structure (105), the differential amplifier (115) and the comparator (120).
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US8098062B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US8098062B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US8098062B23</originalsourceid><addsrcrecordid>eNqNikEKwjAQAHPxIOof9gNCqSD1aql4FNRzWdNtE0izYbPx_VrwAZ5mGGZtbi3PCQWVBawXW7yCw7ePEwRU6xZ50VK-A8YBBj95xQBcNBWFTDGzZFBHQqPwvDWrEUOm3Y8bA5fu0V73lLinnNBSJO2f96Y6NdWxPteHP5YPjaE36A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Comparator circuit having latching behavior and digital output sensors therefrom</title><source>esp@cenet</source><creator>KILIAN WAYNE</creator><creatorcontrib>KILIAN WAYNE</creatorcontrib><description>A digital output sensor (110) includes a sensing structure (105) including at least one sensing element. The sensing structure (105) outputs a differential sensing signal (106, 107). An integrated circuit (100) includes a substrate (101) including signal conditioning circuitry for conditioning the sensing signal (106, 107). The signal conditioning circuitry includes a differential amplifier (115) coupled to receive the sensing signal and provide first and second differential outputs (116, 117), and a comparator (120) having input transistors (Q27, Q28) coupled to receive outputs from the differential amplifier. The comparator (120) also includes first and second current-mirror loads (Q19/Q21 and Q22/Q20) coupled to the input transistors (Q27, Q28) in a cross coupled configuration to provide hysteresis, wherein the first and second current-mirror loads provide differential drive currents (121,122). An output driver (125) is coupled to receive the differential drive currents (121, 122). An output stage (130) includes at least one output transistor which is coupled to the output driver for providing a digital output for the sensor. A voltage regulator (140) is coupled to receive a supply voltage (VS) and output at least one regulated supply voltage (VREG), wherein the regulated supply voltage is coupled to the sensing structure (105), the differential amplifier (115) and the comparator (120).</description><language>eng</language><subject>MEASURING ; MEASURING ELECTRIC VARIABLES ; MEASURING MAGNETIC VARIABLES ; PHYSICS ; TESTING</subject><creationdate>2012</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20120117&amp;DB=EPODOC&amp;CC=US&amp;NR=8098062B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20120117&amp;DB=EPODOC&amp;CC=US&amp;NR=8098062B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>KILIAN WAYNE</creatorcontrib><title>Comparator circuit having latching behavior and digital output sensors therefrom</title><description>A digital output sensor (110) includes a sensing structure (105) including at least one sensing element. The sensing structure (105) outputs a differential sensing signal (106, 107). An integrated circuit (100) includes a substrate (101) including signal conditioning circuitry for conditioning the sensing signal (106, 107). The signal conditioning circuitry includes a differential amplifier (115) coupled to receive the sensing signal and provide first and second differential outputs (116, 117), and a comparator (120) having input transistors (Q27, Q28) coupled to receive outputs from the differential amplifier. The comparator (120) also includes first and second current-mirror loads (Q19/Q21 and Q22/Q20) coupled to the input transistors (Q27, Q28) in a cross coupled configuration to provide hysteresis, wherein the first and second current-mirror loads provide differential drive currents (121,122). An output driver (125) is coupled to receive the differential drive currents (121, 122). An output stage (130) includes at least one output transistor which is coupled to the output driver for providing a digital output for the sensor. A voltage regulator (140) is coupled to receive a supply voltage (VS) and output at least one regulated supply voltage (VREG), wherein the regulated supply voltage is coupled to the sensing structure (105), the differential amplifier (115) and the comparator (120).</description><subject>MEASURING</subject><subject>MEASURING ELECTRIC VARIABLES</subject><subject>MEASURING MAGNETIC VARIABLES</subject><subject>PHYSICS</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2012</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNikEKwjAQAHPxIOof9gNCqSD1aql4FNRzWdNtE0izYbPx_VrwAZ5mGGZtbi3PCQWVBawXW7yCw7ePEwRU6xZ50VK-A8YBBj95xQBcNBWFTDGzZFBHQqPwvDWrEUOm3Y8bA5fu0V73lLinnNBSJO2f96Y6NdWxPteHP5YPjaE36A</recordid><startdate>20120117</startdate><enddate>20120117</enddate><creator>KILIAN WAYNE</creator><scope>EVB</scope></search><sort><creationdate>20120117</creationdate><title>Comparator circuit having latching behavior and digital output sensors therefrom</title><author>KILIAN WAYNE</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US8098062B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2012</creationdate><topic>MEASURING</topic><topic>MEASURING ELECTRIC VARIABLES</topic><topic>MEASURING MAGNETIC VARIABLES</topic><topic>PHYSICS</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>KILIAN WAYNE</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>KILIAN WAYNE</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Comparator circuit having latching behavior and digital output sensors therefrom</title><date>2012-01-17</date><risdate>2012</risdate><abstract>A digital output sensor (110) includes a sensing structure (105) including at least one sensing element. The sensing structure (105) outputs a differential sensing signal (106, 107). An integrated circuit (100) includes a substrate (101) including signal conditioning circuitry for conditioning the sensing signal (106, 107). The signal conditioning circuitry includes a differential amplifier (115) coupled to receive the sensing signal and provide first and second differential outputs (116, 117), and a comparator (120) having input transistors (Q27, Q28) coupled to receive outputs from the differential amplifier. The comparator (120) also includes first and second current-mirror loads (Q19/Q21 and Q22/Q20) coupled to the input transistors (Q27, Q28) in a cross coupled configuration to provide hysteresis, wherein the first and second current-mirror loads provide differential drive currents (121,122). An output driver (125) is coupled to receive the differential drive currents (121, 122). An output stage (130) includes at least one output transistor which is coupled to the output driver for providing a digital output for the sensor. A voltage regulator (140) is coupled to receive a supply voltage (VS) and output at least one regulated supply voltage (VREG), wherein the regulated supply voltage is coupled to the sensing structure (105), the differential amplifier (115) and the comparator (120).</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US8098062B2
source esp@cenet
subjects MEASURING
MEASURING ELECTRIC VARIABLES
MEASURING MAGNETIC VARIABLES
PHYSICS
TESTING
title Comparator circuit having latching behavior and digital output sensors therefrom
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T09%3A52%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=KILIAN%20WAYNE&rft.date=2012-01-17&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS8098062B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true