Stacked lithium secondary battery and its fabrication utilizing a folded configuration
There is provided a stacked lithium secondary battery in which a plurality of cathode plates and a plurality of anode plates are alternatively facing each other, and its fabrication method. The method comprises adhering a plurality of anode plates to a portion of one surface of a separator onto whic...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | There is provided a stacked lithium secondary battery in which a plurality of cathode plates and a plurality of anode plates are alternatively facing each other, and its fabrication method. The method comprises adhering a plurality of anode plates to a portion of one surface of a separator onto which the anode plates are neighboring one another, adhering a plurality of cathode plates to a portion of the other surface of the separator onto which the cathode plates are neighboring one another, covering either the cathode or anode plates with the separator by folding the portion to which no electrode plate is adhered, successively folding the separator in a fixed one-direction along folding lines formed between the electrode plates to obtain a stacked body, and housing the obtained stacked body within a pouch, followed by injection of an electrolyte solution and packaging. The method simplifies the folding process by a fixed one-directional folding rather than a zig-zag folding, and reduces the scale of a facility required for the adhesion process by minimizing the length occupied by the electrode plates. Further, the separator can be tightly fastened such that the charge/discharge characteristics and cycle life of the battery can be enhanced, compared to a zig-zag folding. |
---|