Predicting geographic location associated with network address
A decision tree is provided as a machine learning classifier to predict a user attribute, such as a geographical location of a user, based on a network address. More specifically, the decision tree is constructed via machine learning on a set of sample data that reflects a relationship between a net...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A decision tree is provided as a machine learning classifier to predict a user attribute, such as a geographical location of a user, based on a network address. More specifically, the decision tree is constructed via machine learning on a set of sample data that reflects a relationship between a network address and a user attribute of a "known user" whose profile information is recognizable. For a given network address, the decision tree can be used as a machine learning classifier to predict the most likely user attribute of a potential user. With the predicted attribute, a network service can target a group of potential users for various campaigns without recognizing the identities of the potential users. |
---|