System and method for multidimensional extension of database information using inferred groupings

A system and method for receiving medical or other database information and pregrouping and extending that data include a data enhancement layer configured to generate additional stored dimensions capturing the data and relevant attributes. Data sources such as hospitals, laboratories and others may...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: MCNAIR DOUGLAS S, YARBROUGH MICHAEL E, LANCASTER BRIAN J, PARKINS KENT D, GRAGG JOHN H
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A system and method for receiving medical or other database information and pregrouping and extending that data include a data enhancement layer configured to generate additional stored dimensions capturing the data and relevant attributes. Data sources such as hospitals, laboratories and others may therefore communicate their clinical data to a central warehousing facility which may assemble and extend the resulting aggregated data for data mining purposes. Varying source format and content may be conditioned and conformed to a consistent physical or logical structure. The source data may be extended and recombined into additional related dimensions, pre-associating meaningful attributes for faster querying and storage. The attributes, data and other pieces of information may likewise in embodiments be subjected to an inference analysis to determine whether previously unidentified or unexploited relationships may exist within the universe of source data, for instance using correlation, inference or other analytic techniques. Newly detected, identified or inferred data groupings, which may for instance reveal hidden trends or patterns residing in the data, may then be added back to the enhanced data groupings. Users running analytics against the resulting medical or other datamarts may therefore access a richer set of related information, more powerful sets of predictive models as well as have their queries and other operations run more efficiently.