Method, apparatus and system for reservoir simulation using a multi-scale finite volume method including black oil modeling

A multi-scale finite-volume (MSFV) method simulates nonlinear immiscible three-phase compressible flow in the presence of gravity and capillary forces. Consistent with the MSFV framework, flow and transport are treated separately and differently using a fully implicit sequential algorithm. The press...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: WOLFSTEINER CHRISTIAN, JENNY PATRICK, TCHELEPI HAMDI A, LUNATI IVAN FABRIZIO, LEE SEONG H
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A multi-scale finite-volume (MSFV) method simulates nonlinear immiscible three-phase compressible flow in the presence of gravity and capillary forces. Consistent with the MSFV framework, flow and transport are treated separately and differently using a fully implicit sequential algorithm. The pressure field is solved using an operator splitting algorithm. The general solution of the pressure is decomposed into an elliptic part, a buoyancy/capillary force dominant part, and an inhomogeneous part with source/sink and accumulation. A MSFV method is used to compute the basis functions of the elliptic component, capturing long range interactions in the pressure field. Direct construction of the velocity field and solution of the transport problem on the primal coarse grid provides flexibility in accommodating physical mechanisms. A MSFV method computes an approximate pressure field, including a solution of a course-scale pressure equation; constructs fine-scale fluxes; and computes a phase-transport equation.