System for evaluating price risk of financial product or its financial derivative, dealing system and recorded medium

A system for correctly evaluating price distribution and risk distribution for a financial product or its derivatives introduces a probability density function generated with a Boltzmann model at a higher accuracy than the Gaussian distribution for a probability density. The system has an initial va...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: OHASHI TADAHIRO, OKUDA HIROAKI, ONISHI MOTOHIKO, UENOHARA YUJI, YOSHIOKA RITSUO, KAWASHIMA MASATOSHI, TATSUMI TAKAHIRO
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A system for correctly evaluating price distribution and risk distribution for a financial product or its derivatives introduces a probability density function generated with a Boltzmann model at a higher accuracy than the Gaussian distribution for a probability density. The system has an initial value setup unit and an evaluation condition setup unit. Initial values include at least one of price, price change rate, and price change direction of a financial product. The evaluation conditions include at least time steps and a number of trials. A Boltzmann model analysis unit receives the initial values and the evaluation conditions, and repeats simulations of price fluctuation, based on the Boltzmann model using a Monte Carlo method. A velocity/direction distribution setup unit supplies probability distributions of the price, price change rate, and price change direction for the financial product to the Boltzmann model analysis unit. A random number generator for a Monte Carlo method is employed in the analysis by the Boltzmann model, and an output unit displays the analysis result. A dealing system applies the financial Boltzmann model to option pricing, and reproduces the characteristics of Leptokurcity and Fat-tail by a linear Boltzmann equation to define risk-neutral and unique probability measures. Consequently, option prices can be evaluated in a risk-neutral and unique manner, taking into account Leptokurcity and Fat-tail of a price change distribution.