Wind-powered wireless (RF) anemometer

A wireless wind-powered anemometer comprising: a wind reacting device; a rotatable shaft in communication with the wind reacting device; an ac generator in communication with the rotatable shaft, and where the ac generator is configured to produce an ac voltage that is generally directly proportiona...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: STEIN WILLIAM M
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A wireless wind-powered anemometer comprising: a wind reacting device; a rotatable shaft in communication with the wind reacting device; an ac generator in communication with the rotatable shaft, and where the ac generator is configured to produce an ac voltage that is generally directly proportional to wind speed detected by the wind reacting devices; a signal conditioning and transmitter circuit in communication with the ac generator; and where the signal conditioning and transmitter circuit is configurable to communicate with a wireless network, and where the signal conditioning and transmitter circuit is supplied with power from the ac generator. A wireless wind-powered anemometer comprising: a plurality of conic cups; a rotatable cap fixedly attached to the plurality of conic cups; a shaft fixedly attached to the rotatable cap; a shaft housing rotatably attached to the shaft, and configured such that the shaft rotates with respect to the shaft housing and the shaft housing remains stationary; a first bearing in communication with the shaft and the shaft housing; an electronic housing fixedly attached to the shaft housing; an armature located within the electronic housing and fixedly attached to the shaft; a stator/circuit board located within the electronic housing, fixedly attached to the electronic housing, rotatably attached to the shaft, and configured such that shaft rotates with respect to the stator and the stator remains stationary; a top side of the stator facing the armature; an under side of the stator facing away from the armature; a plurality of coils located on the armature; a plurality of magnets located on the top side of the stator; a second bearing in communication with the shaft and the stator/circuit board, and configured to allow the shaft to rotate with respect to the stator/circuit board; a transmitter located on the stator/circuit board; and an antenna in signal communication with the transmitter.