Method of geometric linear discriminant analysis pattern recognition

Feature attributes are extracted from an observation space to create feature vectors for each class to be identified. A linear transformation matrix is used to reduce the dimension of the feature vectors. A numerical optimization algorithm maximizes a geometric criterion function in order to calcula...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ORDOWSKI MARK LAWRENCE, MEYER GERARD G. L
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Feature attributes are extracted from an observation space to create feature vectors for each class to be identified. A linear transformation matrix is used to reduce the dimension of the feature vectors. A numerical optimization algorithm maximizes a geometric criterion function in order to calculate the linear transformation matrix, where it exploits the geometry of the class contours of constant density. Next, a classifier based on the feature vectors in a lower dimension is generated and a class is determined for the data represented.