Method of geometric linear discriminant analysis pattern recognition
Feature attributes are extracted from an observation space to create feature vectors for each class to be identified. A linear transformation matrix is used to reduce the dimension of the feature vectors. A numerical optimization algorithm maximizes a geometric criterion function in order to calcula...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Feature attributes are extracted from an observation space to create feature vectors for each class to be identified. A linear transformation matrix is used to reduce the dimension of the feature vectors. A numerical optimization algorithm maximizes a geometric criterion function in order to calculate the linear transformation matrix, where it exploits the geometry of the class contours of constant density. Next, a classifier based on the feature vectors in a lower dimension is generated and a class is determined for the data represented. |
---|