Metal planarization system

A method for restoring an eroded portion in an exposed upper surface cavity of a metallic element in a microelectronic device, where the metallic element has a hardness, and the metallic element is laterally surrounded by lateral elements, where at least one structure within the lateral elements has...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: PALLINTI JAYANTHI, DUNTON SAMUEL V, NAGAHARA RONALD J
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A method for restoring an eroded portion in an exposed upper surface cavity of a metallic element in a microelectronic device, where the metallic element has a hardness, and the metallic element is laterally surrounded by lateral elements, where at least one structure within the lateral elements has a hardness that is greater than the hardness of the metallic element. A precursor material is deposited in at least the cavity of the upper surface of the metallic element. The precursor material is deposited to a thickness that at least fills the cavity of the upper surface of the metallic element. The precursor material has a hardness that is less than the hardness of the at least one structure within the lateral elements. The precursor material is removed as necessary from the lateral elements, and the precursor material is planarized. Only the precursor material within the cavity of the upper surface of the metallic element is selectively replaced with a desired material. The eroded portion of the metallic element is thereby restored. By removing precursor material from those areas in which no replacement with the desired material is wanted, the desired material is selectively deposited only in those place where the precursor material remains, and where it is desired to fill in the cavities or dishing that was created in the areas of the softer metallic elements between the harder laterally surrounding elements during a prior chemical mechanical polishing process. Thus, the microelectronic device is more fully planarized, as the dishing is filled in, and the metallic element is supplemented with an additional amount of desired material.