Hybrid model and method for determining mechanical properties and processing properties of an injection-molded part
A method of predicting the properties (e.g., mechanical and/or processing properties) of an injection-molded article is disclosed. The method makes use of a hybrid model which includes at least one neural network. In order to forecast (or predict) properties with respect to the manufacture of a plas...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A method of predicting the properties (e.g., mechanical and/or processing properties) of an injection-molded article is disclosed. The method makes use of a hybrid model which includes at least one neural network. In order to forecast (or predict) properties with respect to the manufacture of a plastic molded article, a hybrid model is used in the present invention, which includes: one or more neural networks NN1, NN2, NN3, NN4, . . . , NNk; and optionally one or more rigorous models R1, R2, R3, R4, . . . , which are connected to one another. The rigorous models are used to map model elements which can be described in mathematical formulae. The neural networks are used to map processes whose relationship is present only in the form of data, as it is in effect impossible to model such processes rigorously. As a result, a forecast relating to properties including the mechanical, thermal and rheological processing properties and relating to the process time of a plastic molded article is obtained. |
---|