Model selection in machine learning with applications to document clustering
A objective function based on a Bayesian statistical estimation framework is used to determine an optimal model selection by choosing both the optimal number of clusters and the optimal feature set. Heuristics can be applied to find the optimal (or at least sub-optimal) of this objective function in...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A objective function based on a Bayesian statistical estimation framework is used to determine an optimal model selection by choosing both the optimal number of clusters and the optimal feature set. Heuristics can be applied to find the optimal (or at least sub-optimal) of this objective function in terms of the feature sets and the number of clusters, wherein the maximization of the objective function corresponds to the optimal model structure. |
---|