Monocrystalline three-dimensional integrated-circuit technology

Three technologies realize monocrystalline three-dimensional (3-D) integrated circuits: (1) silicon sputter epitaxy permitting fast growth at low temperature; (2) real-time pattern generation using a pixel-by-pixel programmable device to create a patterned beam of energetic radiation; and (3) flash...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: WARNER, JR. RAYMOND M, MACCRISKEN JOHN E
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator WARNER, JR. RAYMOND M
MACCRISKEN JOHN E
description Three technologies realize monocrystalline three-dimensional (3-D) integrated circuits: (1) silicon sputter epitaxy permitting fast growth at low temperature; (2) real-time pattern generation using a pixel-by-pixel programmable device to create a patterned beam of energetic radiation; and (3) flash diffusion focuses through a projector barrel the patterned beam on a silicon sample, causing localized dopant diffusion from a heavily doped region at the surface into the underlying region. Removing the heavily doped layer leaves a 2-D doping pattern. Creating additional 2-D patterns on top of it through process repetition produces a buried 3-D doping pattern. One configuration places projector barrel and sample in fixed positions inside the sputtering chamber and a ring of targets around the barrel facing the sample with targets of a given kind symmetrically positioned in the ring. Cobalt can be substituted for the doping layer and can be driven in creating silicide conductive patterns.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US6344116B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US6344116B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US6344116B23</originalsourceid><addsrcrecordid>eNrjZLD3zc_LTy6qLC5JzMnJzEtVKMkoSk3VTcnMTc0rzszPS8xRyMwrSU0vSixJTdFNzixKLs0sUShJTc7Iy8_JT6_kYWBNS8wpTuWF0twMCm6uIc4euqkF-fGpxQWJyal5qSXxocFmxiYmhoZmTkbGRCgBAMqfMeg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Monocrystalline three-dimensional integrated-circuit technology</title><source>esp@cenet</source><creator>WARNER, JR. RAYMOND M ; MACCRISKEN JOHN E</creator><creatorcontrib>WARNER, JR. RAYMOND M ; MACCRISKEN JOHN E</creatorcontrib><description>Three technologies realize monocrystalline three-dimensional (3-D) integrated circuits: (1) silicon sputter epitaxy permitting fast growth at low temperature; (2) real-time pattern generation using a pixel-by-pixel programmable device to create a patterned beam of energetic radiation; and (3) flash diffusion focuses through a projector barrel the patterned beam on a silicon sample, causing localized dopant diffusion from a heavily doped region at the surface into the underlying region. Removing the heavily doped layer leaves a 2-D doping pattern. Creating additional 2-D patterns on top of it through process repetition produces a buried 3-D doping pattern. One configuration places projector barrel and sample in fixed positions inside the sputtering chamber and a ring of targets around the barrel facing the sample with targets of a given kind symmetrically positioned in the ring. Cobalt can be substituted for the doping layer and can be driven in creating silicide conductive patterns.</description><edition>7</edition><language>eng</language><subject>BASIC ELECTRIC ELEMENTS ; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR ; ELECTRICITY ; SEMICONDUCTOR DEVICES</subject><creationdate>2002</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20020205&amp;DB=EPODOC&amp;CC=US&amp;NR=6344116B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76294</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20020205&amp;DB=EPODOC&amp;CC=US&amp;NR=6344116B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WARNER, JR. RAYMOND M</creatorcontrib><creatorcontrib>MACCRISKEN JOHN E</creatorcontrib><title>Monocrystalline three-dimensional integrated-circuit technology</title><description>Three technologies realize monocrystalline three-dimensional (3-D) integrated circuits: (1) silicon sputter epitaxy permitting fast growth at low temperature; (2) real-time pattern generation using a pixel-by-pixel programmable device to create a patterned beam of energetic radiation; and (3) flash diffusion focuses through a projector barrel the patterned beam on a silicon sample, causing localized dopant diffusion from a heavily doped region at the surface into the underlying region. Removing the heavily doped layer leaves a 2-D doping pattern. Creating additional 2-D patterns on top of it through process repetition produces a buried 3-D doping pattern. One configuration places projector barrel and sample in fixed positions inside the sputtering chamber and a ring of targets around the barrel facing the sample with targets of a given kind symmetrically positioned in the ring. Cobalt can be substituted for the doping layer and can be driven in creating silicide conductive patterns.</description><subject>BASIC ELECTRIC ELEMENTS</subject><subject>ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR</subject><subject>ELECTRICITY</subject><subject>SEMICONDUCTOR DEVICES</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2002</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLD3zc_LTy6qLC5JzMnJzEtVKMkoSk3VTcnMTc0rzszPS8xRyMwrSU0vSixJTdFNzixKLs0sUShJTc7Iy8_JT6_kYWBNS8wpTuWF0twMCm6uIc4euqkF-fGpxQWJyal5qSXxocFmxiYmhoZmTkbGRCgBAMqfMeg</recordid><startdate>20020205</startdate><enddate>20020205</enddate><creator>WARNER, JR. RAYMOND M</creator><creator>MACCRISKEN JOHN E</creator><scope>EVB</scope></search><sort><creationdate>20020205</creationdate><title>Monocrystalline three-dimensional integrated-circuit technology</title><author>WARNER, JR. RAYMOND M ; MACCRISKEN JOHN E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US6344116B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2002</creationdate><topic>BASIC ELECTRIC ELEMENTS</topic><topic>ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR</topic><topic>ELECTRICITY</topic><topic>SEMICONDUCTOR DEVICES</topic><toplevel>online_resources</toplevel><creatorcontrib>WARNER, JR. RAYMOND M</creatorcontrib><creatorcontrib>MACCRISKEN JOHN E</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WARNER, JR. RAYMOND M</au><au>MACCRISKEN JOHN E</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Monocrystalline three-dimensional integrated-circuit technology</title><date>2002-02-05</date><risdate>2002</risdate><abstract>Three technologies realize monocrystalline three-dimensional (3-D) integrated circuits: (1) silicon sputter epitaxy permitting fast growth at low temperature; (2) real-time pattern generation using a pixel-by-pixel programmable device to create a patterned beam of energetic radiation; and (3) flash diffusion focuses through a projector barrel the patterned beam on a silicon sample, causing localized dopant diffusion from a heavily doped region at the surface into the underlying region. Removing the heavily doped layer leaves a 2-D doping pattern. Creating additional 2-D patterns on top of it through process repetition produces a buried 3-D doping pattern. One configuration places projector barrel and sample in fixed positions inside the sputtering chamber and a ring of targets around the barrel facing the sample with targets of a given kind symmetrically positioned in the ring. Cobalt can be substituted for the doping layer and can be driven in creating silicide conductive patterns.</abstract><edition>7</edition><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US6344116B2
source esp@cenet
subjects BASIC ELECTRIC ELEMENTS
ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
ELECTRICITY
SEMICONDUCTOR DEVICES
title Monocrystalline three-dimensional integrated-circuit technology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T09%3A58%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WARNER,%20JR.%20RAYMOND%20M&rft.date=2002-02-05&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS6344116B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true