Monocrystalline three-dimensional integrated-circuit technology
Three technologies realize monocrystalline three-dimensional (3-D) integrated circuits: (1) silicon sputter epitaxy permitting fast growth at low temperature; (2) real-time pattern generation using a pixel-by-pixel programmable device to create a patterned beam of energetic radiation; and (3) flash...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Three technologies realize monocrystalline three-dimensional (3-D) integrated circuits: (1) silicon sputter epitaxy permitting fast growth at low temperature; (2) real-time pattern generation using a pixel-by-pixel programmable device to create a patterned beam of energetic radiation; and (3) flash diffusion focuses through a projector barrel the patterned beam on a silicon sample, causing localized dopant diffusion from a heavily doped region at the surface into the underlying region. Removing the heavily doped layer leaves a 2-D doping pattern. Creating additional 2-D patterns on top of it through process repetition produces a buried 3-D doping pattern. One configuration places projector barrel and sample in fixed positions inside the sputtering chamber and a ring of targets around the barrel facing the sample with targets of a given kind symmetrically positioned in the ring. Cobalt can be substituted for the doping layer and can be driven in creating silicide conductive patterns. |
---|