Comparing aerial image to actual photoresist pattern for masking process characterization
A method of simulating a masking process in which a process simulator is used to produce an aerial image. The simulator is configured to receive input information. The input information includes a digital representation of a patterned mask and a data set. Each element of the data set corresponds to...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A method of simulating a masking process in which a process simulator is used to produce an aerial image. The simulator is configured to receive input information. The input information includes a digital representation of a patterned mask and a data set. Each element of the data set corresponds to one of a plurality of parameters associated with the masking process. The simulator is configured to produce an aerial image based upon the input information. The aerial image represents the simulator estimation of a pattern that would be produced by the masking process using the patterned mask under conditions specified by the data set. The method further includes the step of supplying the input information to the simulator to produce the aerial image. A first data base is then generated from the aerial image. The first data base is a digital representation of the aerial image. Thereafter, the pattern is produced on a semiconductor substrate using the masking process and the patterned mask. The pattern is produced under the conditions specified by the data set. A second data base is then generated wherein the second data base is a digital representation of the actual pattern. The first data base and the second data base are then compared to produce an error data base. The error data base is indicative of differences between the aerial image and the pattern. Thereafter, the process simulator is modified based upon the error data base to minimize the differences between a successive iteration of the aerial image and the pattern. |
---|