Negative differential resistance device based on tunneling through microclusters, and method therefor
A solid state electronic device exhibiting negative differential resistance is fabricated by depositing a thin layer of amorphous silicon on a single crystal substrate, doped N+. The amorphous silicon is simultaneously crystallized and oxidized in a dry N2 and O2 mixture. The result is a layer of am...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A solid state electronic device exhibiting negative differential resistance is fabricated by depositing a thin layer of amorphous silicon on a single crystal substrate, doped N+. The amorphous silicon is simultaneously crystallized and oxidized in a dry N2 and O2 mixture. The result is a layer of amorphous Sio2 surrounding microclusters of crystalline silicon. A layer of polycrystalline silicon is deposited to a thickness of approximately 0.5 micron. Ohmic metal contacts are made to the top and bottom. These active layers are isolated by insulating SiO2. A bias voltage applied between the metal contacts results in negative differential resistance due to tunneling through resonant energy levels in microclusters. |
---|