Negative differential resistance device based on tunneling through microclusters, and method therefor

A solid state electronic device exhibiting negative differential resistance is fabricated by depositing a thin layer of amorphous silicon on a single crystal substrate, doped N+. The amorphous silicon is simultaneously crystallized and oxidized in a dry N2 and O2 mixture. The result is a layer of am...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: TSU, RAPHAEL, LUX, ROBERT A, HARVEY, JAMES F
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A solid state electronic device exhibiting negative differential resistance is fabricated by depositing a thin layer of amorphous silicon on a single crystal substrate, doped N+. The amorphous silicon is simultaneously crystallized and oxidized in a dry N2 and O2 mixture. The result is a layer of amorphous Sio2 surrounding microclusters of crystalline silicon. A layer of polycrystalline silicon is deposited to a thickness of approximately 0.5 micron. Ohmic metal contacts are made to the top and bottom. These active layers are isolated by insulating SiO2. A bias voltage applied between the metal contacts results in negative differential resistance due to tunneling through resonant energy levels in microclusters.