Advanced parallel array processor computer package

A parallel array processor for massively parallel applications is formed with low power CMOS with DRAM processing while incorporating processing elements on a single chip. Eight processors on a single chip have their own associated processing element, significant memory, and I/O and are interconnect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: NIER, RICHARD EDWARD, STUPP, JAMES ROBERT, DIEFFENDERFER, JAMES WARREN, SMORAL, VINCENT JOHN, DAPP, MICHAEL CHARLES, MILES, RICHARD ERNEST
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A parallel array processor for massively parallel applications is formed with low power CMOS with DRAM processing while incorporating processing elements on a single chip. Eight processors on a single chip have their own associated processing element, significant memory, and I/O and are interconnected with a hypercube based, but modified, topology. These nodes are then interconnected, either by a hypercube, modified hypercube, or ring, or ring within ring network topology. Conventional microprocessor MMPs consume pins and time going to memory. The new architecture merges processor and memory with multiple PMEs (eight 16 bit processors with 32 K and I/O) in DRAM and has no memory access delays and uses all the pins for networking. The chip can be a single node of a fine-grained parallel processor. Each chip will have eight 16 bit processors, each processor providing 5 MIPs performance. I/O has three internal ports and one external port shared by the plural processors on the chip. Significant software flexibility is provided to enable quick implementation of existing programs written in common languages. It is a developable and expandable technology without need to develop new pinouts, new software, or new utilities as chip density increases and new hardware is provided for a chip function. The scalable chip PME has internal and external connections for broadcast and asynchronous SIMD, MIMD and SIMIMD (SIMD/MIMD) with dynamic switching of modes. The chip can be used in systems which employ 32, 64 or 128,000 processors, and can be used for lower, intermediate and higher ranges. Local and global memory functions can all be provided by the chips themselves, and the system can connect to and support other global memories and DASD. The chip can be used as a microprocessor accelerator, in personal computer applications, as a vision or avionics computer system, or as workstation or supercomputer. There is program compatibility for the fully scalable system.