Self-driven, cone-stack type centrifuge

A bypass circuit centrifuge for separating particulate matter out of a circulating liquid includes a hollow and generally cylindrical centrifuge bowl which is arranged in combination with a base plate so as to define a liquid flow chamber. A hollow centertube axially extends up through the base plat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: PARDUE, BYRON A, HERMAN, PETER K
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A bypass circuit centrifuge for separating particulate matter out of a circulating liquid includes a hollow and generally cylindrical centrifuge bowl which is arranged in combination with a base plate so as to define a liquid flow chamber. A hollow centertube axially extends up through the base plate into the hollow interior of the centrifuge bowl. The bypass circuit centrifuge is designed so as to be assembled within a cover assembly and a pair of oppositely disposed tangential flow nozzles in the base plate are used to spin the centrifuge within the cover so as to cause particles to separate out from the liquid. The interior of the centrifuge bowl includes a plurality of truncated cones which are arranged into a stacked array and are closely spaced so as to enhance the separation efficiency. The stacked array of truncated cones is sandwiched between a top plate positioned adjacent to the top portion of the centrifuge bowl and a bottom plate which is positioned closer to the base plate. The incoming liquid flow exits the centertube through a pair of oil inlets and from there flows through the top plate. The top plate in conjunction with ribs on the inside surface of the centrifuge bowl accelerate and direct this flow into the upper portion of the stacked array of truncated cones. As the flow passes through the channels created between adjacent cones, particle separation occurs as the liquid continues to flow downwardly to the tangential flow nozzles.