Passive seismic imaging for real time management and verification of hydraulic fracturing and of geologic containment of hazardous wastes injected into hydraulic fractures
Using geologic hydraulic fracturing methods and subterranean waste injection and disposal processes well known in the petroleum production industry, hazardous wastes are pulverized, mixed to create a slurry, and injected into a subsurface hydraulic fracture rock formation via a perforated deep well....
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Using geologic hydraulic fracturing methods and subterranean waste injection and disposal processes well known in the petroleum production industry, hazardous wastes are pulverized, mixed to create a slurry, and injected into a subsurface hydraulic fracture rock formation via a perforated deep well. Injection of the slurry at pressures exceeding the rock's minimum principle stress generates microseismic signals whose sources correspond to the locations and geometry of an expanding hydraulic fracture zone. These signals are detected with seismic sensors. Advanced, Real Time, Passive Seismic Imaging (PSI) methods are applied for automatic data acquisition, compression, analysis and calculation to locate the sources of the signals and to map the dimensions and geometry of the fracture zone in real time. Computer visualization codes are employed to present injection data and the fracture zone location, dimensions and geometry for human interpretation and decisions. The same real time passive seismic imaging, data acquisition, computer processing and time visualization process is equivalently capable and efficiently applied for interactive management and control of hydraulic fracturization treatment operations for improved production from oil and gas wells in the petroleum industry. |
---|