Real-time electronically modulated cylindrical holographic autostereoscope

An electronic autostereoscopic display that presents 3D images through the use of horizontal parallax is disclosed. The device disclosed presents a 3D image, viewable over 360 degrees or less, without the need of special viewing glasses. The image is created electronically and in real-time, thus it...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: SHIRES, MARK R
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An electronic autostereoscopic display that presents 3D images through the use of horizontal parallax is disclosed. The device disclosed presents a 3D image, viewable over 360 degrees or less, without the need of special viewing glasses. The image is created electronically and in real-time, thus it can immediately display data gathered remotely, as in live 3D television, and similar applications. The autostereoscope consists of a cylindrical holographic optical element (HOE) which is spun about its axis of symmetry by a motor, light sources such as lasers emit light beams incident on the HOE, and electronic circuitry modulates the lasers according to data received and the angular displacement of the HOE. The HOE consists of 2 basic types of holograms which perform 2 different functions. The first type of hologram performs two dimensional raster scans onto the second type of hologram. The second type of hologram selectively directs the exit angle of the light beams from the raster scans to the eye of the viewer. Thus the laser beam incident on the HOE intersects its curved surface twice. The first HOE diffraciton produced multiple raster scans as the HOE spins. The second HOE diffraction directs each raster scan out of the cylinder at a specified angle. Therefore, the angular displacement of each eye of each viewer about the HOE's axis of symmetry determines the raster and image seen. The result is a convincing 3D image.