Method and apparatus for quantifying superconductivity
The invention relates to a novel apparatus for detecting as well as quantifying superconductivity characterized by a rigid-stemmed pendulum used to support the superconductive sample for free-swinging movement about a low-friction fulcrum in a magnetic field effective to swing the pendulum to one si...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The invention relates to a novel apparatus for detecting as well as quantifying superconductivity characterized by a rigid-stemmed pendulum used to support the superconductive sample for free-swinging movement about a low-friction fulcrum in a magnetic field effective to swing the pendulum to one side, connecting both a first mechanism to the pendulum operative to sense the movement of the pendulum and generate a signal proportional thereto along with a second mechanism effective to receive such a signal from the first mechanism and react thereto in a manner to null the movement of the pendulum along with the sample suspended therefrom, and, finally, connecting a signal processing mechanism into the system whereby the signal generated by the first mechanism is quantified as a measure of the superconductive properties of the sample. The invention also encompasses the method for detecting and quantifying the superconductive properties of a purportedly superconductive sample which includes suspending the sample from a rigid-stemmed pendulum within a magnetic field effective to repel same when exhibiting the Meissner Effect, detecting the repelling force tending to swing the pendulum and measuring it as a quantification of the Meissner Effect force present in the superconductive sample, and nulling the swing of the pendulum by applying an oppositely-acting force thereto equal to the repelling force. |
---|