Temperature-compensating accelerometer
An acceleration sensor (10) comprises a tube (14) formed of an electrically-conductive non-magnetic material; a stop (30) defining an end of the tube which moves longitudinally thereof in response to temperature; a magnetically-permeable element, such as a iron washer (44), proximate with the end of...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An acceleration sensor (10) comprises a tube (14) formed of an electrically-conductive non-magnetic material; a stop (30) defining an end of the tube which moves longitudinally thereof in response to temperature; a magnetically-permeable element, such as a iron washer (44), proximate with the end of the tube (14); and a sensing mass (46) in the tube (14) comprising a pair of permanent magnets (48) secured to the opposite sides of an iron spacer (50) so as to place a pair of like magnetic poles thereof in opposition. In operation, the sensing mass (46) interacts with the iron washer (44) so as to be magnetically biased against the stop (30), while the stop (30) moves longitudinally of the tube (14) to maintain a nearly constant threshold magnetic bias on the sensing mass (46) irrespective of variations in sensor temperature. The sensing mass (46) is displaced in response to acceleration of the housing (12) from its first position against the stop (30) towards a second position in the tube (14) when such acceleration overcomes the magnetic bias, while the tube (14) itself interacts with the sensing mass to provide magnetic damping therefor. Upon reaching the second position in the tube 14 , the sensing mass (46) bridges a pair of electrical contacts (54) with an electrically-conductive surface (56) thereof to indicate that a threshold level of acceleration has been achieved. An electrical coil (60) is secured proximate with the iron washer (44) which, when energized, reversibly magnetizes the latter, whereby the sensing mass (46) is either repelled to the second position in the tube or more strongly biased against the stop (30). |
---|