Phase coupling multiple lasers
Laser energy is combined using dynamic beam splitters that can automatically accommodate changes in the laser cavity mode structure. Nonlinear optical methods and real time holography are employed to achieve phase locking among multiple lasers. A single laser output beam can be produced from a multi...
Gespeichert in:
Hauptverfasser: | , , , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Laser energy is combined using dynamic beam splitters that can automatically accommodate changes in the laser cavity mode structure. Nonlinear optical methods and real time holography are employed to achieve phase locking among multiple lasers. A single laser output beam can be produced from a multitude of laser cavities which collectively contribute to the output power. No outside monitoring and servo mechanisms are required, since nonlinear optical processes automatically perform the functions of both monitoring and control. A coupled laser system includes two or more lasers, each laser having a resonant cavity, a laser gain medium in the resonant cavity, and a nonlinear optical element. Each nonlinear optical element is positioned in its respective resonant cavity to diffract laser energy from the cavity to a coupling beam by means of four-wave mixing (phase conjugation). Each cavity is coupled to another resonant cavity within the system by the coupling beams such that nonlinear optical interactions phase lock the outputs of all the lasers. |
---|