Parabolic trough solar collector
A parabolic trough solar collector using reflective flexible materials is disclosed. A parabolic cylinder mirror is formed by stretching a flexible reflecting material between two parabolic end formers. The formers are held in place by a spreader bar. The resulting mirror is made to track the sun, f...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A parabolic trough solar collector using reflective flexible materials is disclosed. A parabolic cylinder mirror is formed by stretching a flexible reflecting material between two parabolic end formers. The formers are held in place by a spreader bar. The resulting mirror is made to track the sun, focusing the sun's rays on a receiver tube. The ends of the reflective material are attached by glue or other suitable means to attachment straps. The flexible mirror is then attached to the formers. The attachment straps are mounted in brackets and tensioned by tightening associated nuts on the ends of the attachment straps. This serves both to stretch the flexible material orthogonal to the receiver tube and to hold the flexible material on the formers. The flexible mirror is stretched in the direction of the receiver tube by adjusting tensioning nuts. If materials with matching coefficients of expansion for temperature and humidity have been chosen, for example, aluminum foil for the flexible mirror and aluminum for the spreader bar, the mirror will stay in adjustment through temperature and humidity excursions. With dissimilar materials, e.g., aluminized mylar or other polymeric material and steel, spacers can be replaced with springs to maintain proper adjustment. The spreader bar cross section is chosen to be in the optic shadow of the receiver tube when tracking and not to intercept rays of the sun that would otherwise reach the receiver tube. This invention can also be used to make non-parabolic mirrors for other apparatus and applications. |
---|