Method of manufacturing semiconductor bodies composed of amorphous silicon

Semiconductor bodies comprised of amorphous silicon are produced by sequentially depositing a plurality of amorphous silicon layers on a heat-resistant substrate by glow discharge in a silicon halide atmosphere at low pressures and low substrate temperatures, with each layer being hydrogenated with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: GRABMAIER, JOSEF, PLAETTNER, ROLF, KRUEHLER, WOLFGANG
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator GRABMAIER
JOSEF
PLAETTNER
ROLF
KRUEHLER
WOLFGANG
description Semiconductor bodies comprised of amorphous silicon are produced by sequentially depositing a plurality of amorphous silicon layers on a heat-resistant substrate by glow discharge in a silicon halide atmosphere at low pressures and low substrate temperatures, with each layer being hydrogenated with atomic hydrogen before deposition of the next subsequent layer. The semiconductor bodies thus produced are useful as basic or raw materials for fabricating solar cells.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US4292343A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US4292343A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US4292343A3</originalsourceid><addsrcrecordid>eNqFyrEKwjAQANAsDqJ-g_cDLk0XR5GKCE7qXM7LxQaaXMgl_y-Ku9Nb3tJcrlwncSAeIqbmkWorIb1AOQaS5BpVKfAUF1iBJGZR_naMUvIkTUHD_Klrs_A4K29-rsz2NNyP5x1nGVkzEieu4-PWd_vO9vZg_483rlY1Lg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Method of manufacturing semiconductor bodies composed of amorphous silicon</title><source>esp@cenet</source><creator>GRABMAIER; JOSEF ; PLAETTNER; ROLF ; KRUEHLER; WOLFGANG</creator><creatorcontrib>GRABMAIER; JOSEF ; PLAETTNER; ROLF ; KRUEHLER; WOLFGANG</creatorcontrib><description>Semiconductor bodies comprised of amorphous silicon are produced by sequentially depositing a plurality of amorphous silicon layers on a heat-resistant substrate by glow discharge in a silicon halide atmosphere at low pressures and low substrate temperatures, with each layer being hydrogenated with atomic hydrogen before deposition of the next subsequent layer. The semiconductor bodies thus produced are useful as basic or raw materials for fabricating solar cells.</description><language>eng</language><subject>BASIC ELECTRIC ELEMENTS ; CHEMICAL SURFACE TREATMENT ; CHEMISTRY ; CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION ORPROCESSING OF GOODS ; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL ; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL ; COATING MATERIAL WITH METALLIC MATERIAL ; COATING METALLIC MATERIAL ; DIFFUSION TREATMENT OF METALLIC MATERIAL ; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR ; ELECTRICITY ; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC ; GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS ; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL ; METALLURGY ; REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGYGENERATION, TRANSMISSION OR DISTRIBUTION ; SEMICONDUCTOR DEVICES ; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION ; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS ; TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINSTCLIMATE CHANGE</subject><creationdate>1981</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=19810929&amp;DB=EPODOC&amp;CC=US&amp;NR=4292343A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,781,886,25566,76549</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=19810929&amp;DB=EPODOC&amp;CC=US&amp;NR=4292343A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>GRABMAIER; JOSEF</creatorcontrib><creatorcontrib>PLAETTNER; ROLF</creatorcontrib><creatorcontrib>KRUEHLER; WOLFGANG</creatorcontrib><title>Method of manufacturing semiconductor bodies composed of amorphous silicon</title><description>Semiconductor bodies comprised of amorphous silicon are produced by sequentially depositing a plurality of amorphous silicon layers on a heat-resistant substrate by glow discharge in a silicon halide atmosphere at low pressures and low substrate temperatures, with each layer being hydrogenated with atomic hydrogen before deposition of the next subsequent layer. The semiconductor bodies thus produced are useful as basic or raw materials for fabricating solar cells.</description><subject>BASIC ELECTRIC ELEMENTS</subject><subject>CHEMICAL SURFACE TREATMENT</subject><subject>CHEMISTRY</subject><subject>CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION ORPROCESSING OF GOODS</subject><subject>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</subject><subject>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</subject><subject>COATING MATERIAL WITH METALLIC MATERIAL</subject><subject>COATING METALLIC MATERIAL</subject><subject>DIFFUSION TREATMENT OF METALLIC MATERIAL</subject><subject>ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR</subject><subject>ELECTRICITY</subject><subject>GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC</subject><subject>GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS</subject><subject>INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL</subject><subject>METALLURGY</subject><subject>REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGYGENERATION, TRANSMISSION OR DISTRIBUTION</subject><subject>SEMICONDUCTOR DEVICES</subject><subject>SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</subject><subject>TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS</subject><subject>TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINSTCLIMATE CHANGE</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>1981</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqFyrEKwjAQANAsDqJ-g_cDLk0XR5GKCE7qXM7LxQaaXMgl_y-Ku9Nb3tJcrlwncSAeIqbmkWorIb1AOQaS5BpVKfAUF1iBJGZR_naMUvIkTUHD_Klrs_A4K29-rsz2NNyP5x1nGVkzEieu4-PWd_vO9vZg_483rlY1Lg</recordid><startdate>19810929</startdate><enddate>19810929</enddate><creator>GRABMAIER; JOSEF</creator><creator>PLAETTNER; ROLF</creator><creator>KRUEHLER; WOLFGANG</creator><scope>EVB</scope></search><sort><creationdate>19810929</creationdate><title>Method of manufacturing semiconductor bodies composed of amorphous silicon</title><author>GRABMAIER; JOSEF ; PLAETTNER; ROLF ; KRUEHLER; WOLFGANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US4292343A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>1981</creationdate><topic>BASIC ELECTRIC ELEMENTS</topic><topic>CHEMICAL SURFACE TREATMENT</topic><topic>CHEMISTRY</topic><topic>CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION ORPROCESSING OF GOODS</topic><topic>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</topic><topic>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</topic><topic>COATING MATERIAL WITH METALLIC MATERIAL</topic><topic>COATING METALLIC MATERIAL</topic><topic>DIFFUSION TREATMENT OF METALLIC MATERIAL</topic><topic>ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR</topic><topic>ELECTRICITY</topic><topic>GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC</topic><topic>GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS</topic><topic>INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL</topic><topic>METALLURGY</topic><topic>REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGYGENERATION, TRANSMISSION OR DISTRIBUTION</topic><topic>SEMICONDUCTOR DEVICES</topic><topic>SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</topic><topic>TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS</topic><topic>TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINSTCLIMATE CHANGE</topic><toplevel>online_resources</toplevel><creatorcontrib>GRABMAIER; JOSEF</creatorcontrib><creatorcontrib>PLAETTNER; ROLF</creatorcontrib><creatorcontrib>KRUEHLER; WOLFGANG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>GRABMAIER; JOSEF</au><au>PLAETTNER; ROLF</au><au>KRUEHLER; WOLFGANG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Method of manufacturing semiconductor bodies composed of amorphous silicon</title><date>1981-09-29</date><risdate>1981</risdate><abstract>Semiconductor bodies comprised of amorphous silicon are produced by sequentially depositing a plurality of amorphous silicon layers on a heat-resistant substrate by glow discharge in a silicon halide atmosphere at low pressures and low substrate temperatures, with each layer being hydrogenated with atomic hydrogen before deposition of the next subsequent layer. The semiconductor bodies thus produced are useful as basic or raw materials for fabricating solar cells.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US4292343A
source esp@cenet
subjects BASIC ELECTRIC ELEMENTS
CHEMICAL SURFACE TREATMENT
CHEMISTRY
CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION ORPROCESSING OF GOODS
COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
COATING MATERIAL WITH METALLIC MATERIAL
COATING METALLIC MATERIAL
DIFFUSION TREATMENT OF METALLIC MATERIAL
ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
ELECTRICITY
GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC
GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS
INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL
METALLURGY
REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGYGENERATION, TRANSMISSION OR DISTRIBUTION
SEMICONDUCTOR DEVICES
SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION
TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINSTCLIMATE CHANGE
title Method of manufacturing semiconductor bodies composed of amorphous silicon
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T08%3A21%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=GRABMAIER;%20JOSEF&rft.date=1981-09-29&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS4292343A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true