Preparation of oxynitride glass-ceramics

The instant invention is directed to the production of glass-ceramic articles from thermally crystallizable glass compositions containing, by weight, about 40-85% SiO2 and 2.5-17% N as basic constituents and utilizing such modifiers as the alkali metals, the elements of Groups IIA and IIB of the Per...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: CHYUNG, KENNETH, WUSIRIKA, RAJA R
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The instant invention is directed to the production of glass-ceramic articles from thermally crystallizable glass compositions containing, by weight, about 40-85% SiO2 and 2.5-17% N as basic constituents and utilizing such modifiers as the alkali metals, the elements of Groups IIA and IIB of the Periodic Table, boron, and aluminum to obtain practical glass-forming compositions. In general, at N contents greater than about 3.5%, the predominant crystal phase developed in situ will customarily comprise "nitrogen mullite", silicon oxynitride (Si2ON2), and/or beta '-Si3N4 solid solution. The crystal phase which has been denominated in the literature as "nitrogen-mullite" has a lath-like morphology and, hence, is useful in reinforcing the crystalline body. Where the predominant crystal phase comprises a silicate, it is believed that nitrogen is present in some manner within the silicate crystal structure. The parent thermally crystallizable glasses appear to be self-nucleating, i.e., the addition of a conventional nucleating agent such as TiO2, ZrO2, or SnO2 is not required to cause crystallization in situ. It is postulated that N may function as a nucleating agent.