Automatic Tokenization of Features Using Machine Learning

Aspects of the disclosure relate to generating recommendations for a user based on the customer's account information and the customer's activity on one or more media platforms using multiple machine learning (ML) models. A computing platform may determine a plurality of account features b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Vemireddy, Vijaya L, Renckert, Jennifer, Oni, Shola, Nicholson, Diana
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Vemireddy, Vijaya L
Renckert, Jennifer
Oni, Shola
Nicholson, Diana
description Aspects of the disclosure relate to generating recommendations for a user based on the customer's account information and the customer's activity on one or more media platforms using multiple machine learning (ML) models. A computing platform may determine a plurality of account features based on the account information via a user ML model. The computing platform may determine a plurality of media features based on unstructured media data via a media ML model. A recommendation ML model generates tokens representing each of the plurality of account features and each of the plurality of media features in a fully connected graph structure. The recommendation ML model processes and outputs a recommendation score based on the tokens in the fully connected graph structure. A recommendation is generated by the computing platform based on the recommendation score.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2024403604A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2024403604A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2024403604A13</originalsourceid><addsrcrecordid>eNrjZLB0LC3Jz00syUxWCMnPTs3LrAKy8_MU8tMU3FITS0qLUosVQosz89IVfBOTMzLzUhV8UhOL8oACPAysaYk5xam8UJqbQdnNNcTZQze1ID8-tbggMTk1L7UkPjTYyMDIxMTA2MzAxNHQmDhVAPChL2s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Automatic Tokenization of Features Using Machine Learning</title><source>esp@cenet</source><creator>Vemireddy, Vijaya L ; Renckert, Jennifer ; Oni, Shola ; Nicholson, Diana</creator><creatorcontrib>Vemireddy, Vijaya L ; Renckert, Jennifer ; Oni, Shola ; Nicholson, Diana</creatorcontrib><description>Aspects of the disclosure relate to generating recommendations for a user based on the customer's account information and the customer's activity on one or more media platforms using multiple machine learning (ML) models. A computing platform may determine a plurality of account features based on the account information via a user ML model. The computing platform may determine a plurality of media features based on unstructured media data via a media ML model. A recommendation ML model generates tokens representing each of the plurality of account features and each of the plurality of media features in a fully connected graph structure. The recommendation ML model processes and outputs a recommendation score based on the tokens in the fully connected graph structure. A recommendation is generated by the computing platform based on the recommendation score.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20241205&amp;DB=EPODOC&amp;CC=US&amp;NR=2024403604A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20241205&amp;DB=EPODOC&amp;CC=US&amp;NR=2024403604A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Vemireddy, Vijaya L</creatorcontrib><creatorcontrib>Renckert, Jennifer</creatorcontrib><creatorcontrib>Oni, Shola</creatorcontrib><creatorcontrib>Nicholson, Diana</creatorcontrib><title>Automatic Tokenization of Features Using Machine Learning</title><description>Aspects of the disclosure relate to generating recommendations for a user based on the customer's account information and the customer's activity on one or more media platforms using multiple machine learning (ML) models. A computing platform may determine a plurality of account features based on the account information via a user ML model. The computing platform may determine a plurality of media features based on unstructured media data via a media ML model. A recommendation ML model generates tokens representing each of the plurality of account features and each of the plurality of media features in a fully connected graph structure. The recommendation ML model processes and outputs a recommendation score based on the tokens in the fully connected graph structure. A recommendation is generated by the computing platform based on the recommendation score.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLB0LC3Jz00syUxWCMnPTs3LrAKy8_MU8tMU3FITS0qLUosVQosz89IVfBOTMzLzUhV8UhOL8oACPAysaYk5xam8UJqbQdnNNcTZQze1ID8-tbggMTk1L7UkPjTYyMDIxMTA2MzAxNHQmDhVAPChL2s</recordid><startdate>20241205</startdate><enddate>20241205</enddate><creator>Vemireddy, Vijaya L</creator><creator>Renckert, Jennifer</creator><creator>Oni, Shola</creator><creator>Nicholson, Diana</creator><scope>EVB</scope></search><sort><creationdate>20241205</creationdate><title>Automatic Tokenization of Features Using Machine Learning</title><author>Vemireddy, Vijaya L ; Renckert, Jennifer ; Oni, Shola ; Nicholson, Diana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2024403604A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>Vemireddy, Vijaya L</creatorcontrib><creatorcontrib>Renckert, Jennifer</creatorcontrib><creatorcontrib>Oni, Shola</creatorcontrib><creatorcontrib>Nicholson, Diana</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Vemireddy, Vijaya L</au><au>Renckert, Jennifer</au><au>Oni, Shola</au><au>Nicholson, Diana</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Automatic Tokenization of Features Using Machine Learning</title><date>2024-12-05</date><risdate>2024</risdate><abstract>Aspects of the disclosure relate to generating recommendations for a user based on the customer's account information and the customer's activity on one or more media platforms using multiple machine learning (ML) models. A computing platform may determine a plurality of account features based on the account information via a user ML model. The computing platform may determine a plurality of media features based on unstructured media data via a media ML model. A recommendation ML model generates tokens representing each of the plurality of account features and each of the plurality of media features in a fully connected graph structure. The recommendation ML model processes and outputs a recommendation score based on the tokens in the fully connected graph structure. A recommendation is generated by the computing platform based on the recommendation score.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2024403604A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title Automatic Tokenization of Features Using Machine Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T16%3A40%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Vemireddy,%20Vijaya%20L&rft.date=2024-12-05&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2024403604A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true