Automatic Tokenization of Features Using Machine Learning
Aspects of the disclosure relate to generating recommendations for a user based on the customer's account information and the customer's activity on one or more media platforms using multiple machine learning (ML) models. A computing platform may determine a plurality of account features b...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Vemireddy, Vijaya L Renckert, Jennifer Oni, Shola Nicholson, Diana |
description | Aspects of the disclosure relate to generating recommendations for a user based on the customer's account information and the customer's activity on one or more media platforms using multiple machine learning (ML) models. A computing platform may determine a plurality of account features based on the account information via a user ML model. The computing platform may determine a plurality of media features based on unstructured media data via a media ML model. A recommendation ML model generates tokens representing each of the plurality of account features and each of the plurality of media features in a fully connected graph structure. The recommendation ML model processes and outputs a recommendation score based on the tokens in the fully connected graph structure. A recommendation is generated by the computing platform based on the recommendation score. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2024403604A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2024403604A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2024403604A13</originalsourceid><addsrcrecordid>eNrjZLB0LC3Jz00syUxWCMnPTs3LrAKy8_MU8tMU3FITS0qLUosVQosz89IVfBOTMzLzUhV8UhOL8oACPAysaYk5xam8UJqbQdnNNcTZQze1ID8-tbggMTk1L7UkPjTYyMDIxMTA2MzAxNHQmDhVAPChL2s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Automatic Tokenization of Features Using Machine Learning</title><source>esp@cenet</source><creator>Vemireddy, Vijaya L ; Renckert, Jennifer ; Oni, Shola ; Nicholson, Diana</creator><creatorcontrib>Vemireddy, Vijaya L ; Renckert, Jennifer ; Oni, Shola ; Nicholson, Diana</creatorcontrib><description>Aspects of the disclosure relate to generating recommendations for a user based on the customer's account information and the customer's activity on one or more media platforms using multiple machine learning (ML) models. A computing platform may determine a plurality of account features based on the account information via a user ML model. The computing platform may determine a plurality of media features based on unstructured media data via a media ML model. A recommendation ML model generates tokens representing each of the plurality of account features and each of the plurality of media features in a fully connected graph structure. The recommendation ML model processes and outputs a recommendation score based on the tokens in the fully connected graph structure. A recommendation is generated by the computing platform based on the recommendation score.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20241205&DB=EPODOC&CC=US&NR=2024403604A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20241205&DB=EPODOC&CC=US&NR=2024403604A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Vemireddy, Vijaya L</creatorcontrib><creatorcontrib>Renckert, Jennifer</creatorcontrib><creatorcontrib>Oni, Shola</creatorcontrib><creatorcontrib>Nicholson, Diana</creatorcontrib><title>Automatic Tokenization of Features Using Machine Learning</title><description>Aspects of the disclosure relate to generating recommendations for a user based on the customer's account information and the customer's activity on one or more media platforms using multiple machine learning (ML) models. A computing platform may determine a plurality of account features based on the account information via a user ML model. The computing platform may determine a plurality of media features based on unstructured media data via a media ML model. A recommendation ML model generates tokens representing each of the plurality of account features and each of the plurality of media features in a fully connected graph structure. The recommendation ML model processes and outputs a recommendation score based on the tokens in the fully connected graph structure. A recommendation is generated by the computing platform based on the recommendation score.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLB0LC3Jz00syUxWCMnPTs3LrAKy8_MU8tMU3FITS0qLUosVQosz89IVfBOTMzLzUhV8UhOL8oACPAysaYk5xam8UJqbQdnNNcTZQze1ID8-tbggMTk1L7UkPjTYyMDIxMTA2MzAxNHQmDhVAPChL2s</recordid><startdate>20241205</startdate><enddate>20241205</enddate><creator>Vemireddy, Vijaya L</creator><creator>Renckert, Jennifer</creator><creator>Oni, Shola</creator><creator>Nicholson, Diana</creator><scope>EVB</scope></search><sort><creationdate>20241205</creationdate><title>Automatic Tokenization of Features Using Machine Learning</title><author>Vemireddy, Vijaya L ; Renckert, Jennifer ; Oni, Shola ; Nicholson, Diana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2024403604A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>Vemireddy, Vijaya L</creatorcontrib><creatorcontrib>Renckert, Jennifer</creatorcontrib><creatorcontrib>Oni, Shola</creatorcontrib><creatorcontrib>Nicholson, Diana</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Vemireddy, Vijaya L</au><au>Renckert, Jennifer</au><au>Oni, Shola</au><au>Nicholson, Diana</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Automatic Tokenization of Features Using Machine Learning</title><date>2024-12-05</date><risdate>2024</risdate><abstract>Aspects of the disclosure relate to generating recommendations for a user based on the customer's account information and the customer's activity on one or more media platforms using multiple machine learning (ML) models. A computing platform may determine a plurality of account features based on the account information via a user ML model. The computing platform may determine a plurality of media features based on unstructured media data via a media ML model. A recommendation ML model generates tokens representing each of the plurality of account features and each of the plurality of media features in a fully connected graph structure. The recommendation ML model processes and outputs a recommendation score based on the tokens in the fully connected graph structure. A recommendation is generated by the computing platform based on the recommendation score.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2024403604A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES PHYSICS SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR |
title | Automatic Tokenization of Features Using Machine Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T16%3A40%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Vemireddy,%20Vijaya%20L&rft.date=2024-12-05&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2024403604A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |